我们在延迟设置中研究了非旋转匪徒和专家,其中延迟取决于时间和武器。虽然仅延迟仅取决于时间的延迟已经过度研究,但依赖于扶手的延迟设置更好地以推出新技术挑战的成本更好地捕获现实世界应用。在完整信息(专家)设置中,我们设计了一种具有一阶遗憾的算法,界定延迟和损失之间有趣的权衡。我们证明了类似的一阶遗憾,对于强盗设置,当允许学习者观察丢失有多少损失时。这些是延迟设置中的第一个界限,取决于最佳臂的损耗和延迟。当在强盗设置没有观察到损失以外的信息时,我们仍然可以通过对Zimmert和Seldin算法(2020)的修改来证明遗憾。我们的分析铰链在漂移的新颖界限上,测量算法在一轮超前时可以执行多少算法。
translated by 谷歌翻译
放射线学使用定量医学成像特征来预测临床结果。目前,在新的临床应用中,必须通过启发式试验和纠正过程手动完成各种可用选项的最佳放射组方法。在这项研究中,我们提出了一个框架,以自动优化每个应用程序的放射线工作流程的构建。为此,我们将放射线学作为模块化工作流程,并为每个组件包含大量的常见算法。为了优化每个应用程序的工作流程,我们使用随机搜索和结合使用自动化机器学习。我们在十二个不同的临床应用中评估我们的方法,从而在曲线下导致以下区域:1)脂肪肉瘤(0.83); 2)脱粘型纤维瘤病(0.82); 3)原发性肝肿瘤(0.80); 4)胃肠道肿瘤(0.77); 5)结直肠肝转移(0.61); 6)黑色素瘤转移(0.45); 7)肝细胞癌(0.75); 8)肠系膜纤维化(0.80); 9)前列腺癌(0.72); 10)神经胶质瘤(0.71); 11)阿尔茨海默氏病(0.87);和12)头颈癌(0.84)。我们表明,我们的框架具有比较人类专家的竞争性能,优于放射线基线,并且表现相似或优于贝叶斯优化和更高级的合奏方法。最后,我们的方法完全自动优化了放射线工作流的构建,从而简化了在新应用程序中对放射线生物标志物的搜索。为了促进可重复性和未来的研究,我们公开发布了六个数据集,框架的软件实施以及重现这项研究的代码。
translated by 谷歌翻译
为了确定性能问题的原因或预测过程行为,必须具有正确和完整的事件数据至关重要。这对于具有共享资源的分布式系统尤其重要,例如,例如,一个案例可以阻止对同一台机器竞争的另一个案例,从而导致性能的帧间依赖性。然而,由于各种原因,现实系统通常只记录所有事件的子集。要了解和分析共享资源的进程的行为和性能,我们的目标是重建必须发生的情况的事件时间戳的界限,但在系统中的其他情况下未推断出现引人注目。我们通过系统地在事件日志和流程模型中系统地引入多实体概念来制定和解决问题。我们介绍了一种基于多实体事件日志的部分级模型和用于多实体进程的相应组合模型。我们将PQR-Systems定义为具有共享资源和队列的特殊类多实体进程。然后,我们研究了从一个不完整的事件日志未观察的事件和它们的时间戳推断出与PQR系统一致的时间戳。通过根据PQR模型重建未观察的资源和队列来解决问题,并使用线性程序导出其时间戳的界限。虽然在机场的行李处理系统如行李处理系统中的材料处理系统说明了问题,但该方法可以应用于录制不完整的其他设置。这些想法已在PROM中实现,并使用合成和实际事件日志进行评估。
translated by 谷歌翻译
机器学习算法必须能够有效地应对大量数据集。因此,他们必须在任何现代系统上进行良好的扩展,并能够利用独立于供应商的加速器的计算能力。在监督学习领域,支持向量机(SVM)被广泛使用。但是,即使是现代化和优化的实现,例如LIBSVM或ThunderSVM对于尖端硬件的大型非平凡的密集数据集也不能很好地扩展:大多数SVM实现基于顺序最小优化,这是一种优化的固有顺序算法。因此,它们不适合高度平行的GPU。此外,我们不知道支持不同供应商的CPU和GPU的性能便携式实现。我们已经开发了PLSSVM库来解决这两个问题。首先,我们将SVM的配方作为最小二乘问题。然后训练SVM沸腾以求解已知高度平行算法的线性方程系统。其次,我们提供了一个独立但高效的实现:PLSSVM使用不同的可互换后端 - openmp,cuda,opencl,sycl-支持来自多个GPU的NVIDIA,AMD或INTEL等各种供应商的现代硬件。 PLSSVM可以用作LIBSVM的倒入替换。与LIBSVM相比,与ThunderSVM相比,我们观察到高达10的CPU和GPU的加速度。我们的实施量表在多核CPU上缩放,并在多达256个CPU线程和多个GPU上平行加速为74.7,在四个GPU上的并行加速为3.71。代码,实用程序脚本和文档都可以在GitHub上获得:https://github.com/sc-sgs/plssvm。
translated by 谷歌翻译
We present the interpretable meta neural ordinary differential equation (iMODE) method to rapidly learn generalizable (i.e., not parameter-specific) dynamics from trajectories of multiple dynamical systems that vary in their physical parameters. The iMODE method learns meta-knowledge, the functional variations of the force field of dynamical system instances without knowing the physical parameters, by adopting a bi-level optimization framework: an outer level capturing the common force field form among studied dynamical system instances and an inner level adapting to individual system instances. A priori physical knowledge can be conveniently embedded in the neural network architecture as inductive bias, such as conservative force field and Euclidean symmetry. With the learned meta-knowledge, iMODE can model an unseen system within seconds, and inversely reveal knowledge on the physical parameters of a system, or as a Neural Gauge to "measure" the physical parameters of an unseen system with observed trajectories. We test the validity of the iMODE method on bistable, double pendulum, Van der Pol, Slinky, and reaction-diffusion systems.
translated by 谷歌翻译
Recent advancements in sensing and communication facilitate obtaining high-frequency real-time data from various physical systems like power networks, climate systems, biological networks, etc. However, since the data are recorded by physical sensors, it is natural that the obtained data is corrupted by measurement noise. In this paper, we present a novel algorithm for online real-time learning of dynamical systems from noisy time-series data, which employs the Robust Koopman operator framework to mitigate the effect of measurement noise. The proposed algorithm has three main advantages: a) it allows for online real-time monitoring of a dynamical system; b) it obtains a linear representation of the underlying dynamical system, thus enabling the user to use linear systems theory for analysis and control of the system; c) it is computationally fast and less intensive than the popular Extended Dynamic Mode Decomposition (EDMD) algorithm. We illustrate the efficiency of the proposed algorithm by applying it to identify the Van der Pol oscillator, the IEEE 68 bus system, and a ring network of Van der Pol oscillators.
translated by 谷歌翻译
We introduce PRISM, a method for real-time filtering in a probabilistic generative model of agent motion and visual perception. Previous approaches either lack uncertainty estimates for the map and agent state, do not run in real-time, do not have a dense scene representation or do not model agent dynamics. Our solution reconciles all of these aspects. We start from a predefined state-space model which combines differentiable rendering and 6-DoF dynamics. Probabilistic inference in this model amounts to simultaneous localisation and mapping (SLAM) and is intractable. We use a series of approximations to Bayesian inference to arrive at probabilistic map and state estimates. We take advantage of well-established methods and closed-form updates, preserving accuracy and enabling real-time capability. The proposed solution runs at 10Hz real-time and is similarly accurate to state-of-the-art SLAM in small to medium-sized indoor environments, with high-speed UAV and handheld camera agents (Blackbird, EuRoC and TUM-RGBD).
translated by 谷歌翻译
Strategic test allocation plays a major role in the control of both emerging and existing pandemics (e.g., COVID-19, HIV). Widespread testing supports effective epidemic control by (1) reducing transmission via identifying cases, and (2) tracking outbreak dynamics to inform targeted interventions. However, infectious disease surveillance presents unique statistical challenges. For instance, the true outcome of interest - one's positive infectious status, is often a latent variable. In addition, presence of both network and temporal dependence reduces the data to a single observation. As testing entire populations regularly is neither efficient nor feasible, standard approaches to testing recommend simple rule-based testing strategies (e.g., symptom based, contact tracing), without taking into account individual risk. In this work, we study an adaptive sequential design involving n individuals over a period of {\tau} time-steps, which allows for unspecified dependence among individuals and across time. Our causal target parameter is the mean latent outcome we would have obtained after one time-step, if, starting at time t given the observed past, we had carried out a stochastic intervention that maximizes the outcome under a resource constraint. We propose an Online Super Learner for adaptive sequential surveillance that learns the optimal choice of tests strategies over time while adapting to the current state of the outbreak. Relying on a series of working models, the proposed method learns across samples, through time, or both: based on the underlying (unknown) structure in the data. We present an identification result for the latent outcome in terms of the observed data, and demonstrate the superior performance of the proposed strategy in a simulation modeling a residential university environment during the COVID-19 pandemic.
translated by 谷歌翻译
Causal deep learning (CDL) is a new and important research area in the larger field of machine learning. With CDL, researchers aim to structure and encode causal knowledge in the extremely flexible representation space of deep learning models. Doing so will lead to more informed, robust, and general predictions and inference -- which is important! However, CDL is still in its infancy. For example, it is not clear how we ought to compare different methods as they are so different in their output, the way they encode causal knowledge, or even how they represent this knowledge. This is a living paper that categorises methods in causal deep learning beyond Pearl's ladder of causation. We refine the rungs in Pearl's ladder, while also adding a separate dimension that categorises the parametric assumptions of both input and representation, arriving at the map of causal deep learning. Our map covers machine learning disciplines such as supervised learning, reinforcement learning, generative modelling and beyond. Our paradigm is a tool which helps researchers to: find benchmarks, compare methods, and most importantly: identify research gaps. With this work we aim to structure the avalanche of papers being published on causal deep learning. While papers on the topic are being published daily, our map remains fixed. We open-source our map for others to use as they see fit: perhaps to offer guidance in a related works section, or to better highlight the contribution of their paper.
translated by 谷歌翻译
Front-door adjustment is a classic technique to estimate causal effects from a specified directed acyclic graph (DAG) and observed data. The advantage of this approach is that it uses observed mediators to identify causal effects, which is possible even in the presence of unobserved confounding. While the statistical properties of the front-door estimation are quite well understood, its algorithmic aspects remained unexplored for a long time. Recently, Jeong, Tian, and Barenboim [NeurIPS 2022] have presented the first polynomial-time algorithm for finding sets satisfying the front-door criterion in a given DAG, with an $O(n^3(n+m))$ run time, where $n$ denotes the number of variables and $m$ the number of edges of the graph. In our work, we give the first linear-time, i.e. $O(n+m)$, algorithm for this task, which thus reaches the asymptotically optimal time complexity, as the size of the input is $\Omega(n+m)$. We also provide an algorithm to enumerate all front-door adjustment sets in a given DAG with delay $O(n(n + m))$. These results improve the algorithms by Jeong et al. [2022] for the two tasks by a factor of $n^3$, respectively.
translated by 谷歌翻译